Post

Convex Analysis: References and Further Reading

  1. Bauschke, H. H., & Combettes, P. L. (2011). Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer New York. https://doi.org/10.1007/978-1-4419-9467-7
  2. Boyd, S. P., & Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press.
  3. Hiriart-Urruty, J.-B., & Lemaréchal, C. (1993). Convex Analysis and Minimization Algorithms I (M. Artin, S. S. Chern, J. Coates, J. M. Fröhlich, H. Hironaka, F. Hirzebruch, L. Hörmander, C. C. Moore, J. K. Moser, M. Nagata, W. Schmidt, D. S. Scott, \relax Y. G. Sinai, J. Tits, M. Waldschmidt, S. Watanabe, M. Berger, B. Eckmann, & S. R. S. Varadhan, Eds.; Vol. 305). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-02796-7
  4. Morduchovič, B. S., & Nguyen, M. N. (2014). An Easy Path to Convex Analysis and Applications (Online-Ausg). Morgan & Claypool Publishers.
  5. Orabona, F. (2025). A Modern Introduction to Online Learning (Number arXiv:1912.13213). arXiv. https://doi.org/10.48550/arXiv.1912.13213
  6. Peyre, G. Mathematical Foundations of Data Sciences.
  7. Rockafellar, R. T. (1997). Convex Analysis (Princeton Paperbacks). Princeton University Press.
This post is licensed under CC BY 4.0 by the author.